Families intersecting on an interval

نویسنده

  • Paul A. Russell
چکیده

We shall be interested in the following Erdős-Ko-Rado-type question. Fix some set B ⊂ [n]. How large a family A ⊂ P [n] can we find such that the intersection of any two sets in A contains a cyclic translate (modulo n) of B? Chung, Graham, Frankl and Shearer have proved that, in the case where B is a block of length t, we can do no better than to take A to consist of all supersets of B. We give an alternative proof of this result, which is in a certain sense more ‘direct’.

منابع مشابه

Regular bipartite graphs and intersecting families

In this paper we present a simple unifying approach to prove several statements about intersecting and cross-intersecting families, including the Erdős–Ko–Rado theorem, the Hilton–Milner theorem, a theorem due to Frankl concerning the size of intersecting families with bounded maximal degree, and versions of results on the sum of sizes of non-empty cross-intersecting families due to Frankl and ...

متن کامل

Counting Families of Mutually Intersecting Sets

We determine the number of maximal intersecting families on a 9-set and find 423295099074735261880. We determine the number of independent sets of the Kneser graph K(9, 4) and find 366996244568643864340. Finally, we determine the number of intersecting families on an 8-set and find 14704022144627161780744368338695925293142507520.

متن کامل

Structure and properties of large intersecting families

We say that a family of k-subsets of an n-element set is intersecting, if any two of its sets intersect. In this paper we study different extremal properties of intersecting families, as well as the structure of large intersecting families. We also give some results on k-uniform families without s pairwise disjoint sets, related to Erdős Matching Conjecture. We prove a conclusive version of Fra...

متن کامل

Most Probably Intersecting Hypergraphs

The celebrated Erdős-Ko-Rado theorem shows that for n > 2k the largest intersecting k-uniform set family on [n] has size ( n−1 k−1 ) . It is natural to ask how far from intersecting larger set families must be. Katona, Katona and Katona introduced the notion of most probably intersecting families, which maximise the probability of random subfamilies being intersecting. We consider the most prob...

متن کامل

ASYMPTOTIC UPPER BOUNDS ON THE SHADES OF t-INTERSECTING FAMILIES

We examine the m-shades of t-intersecting families of k-subsets of [n], and conjecture on the optimal upper bound on their cardinalities. This conjecture extends Frankl’s General Conjecture that was proven true by Ahlswede–Khachatrian. From this we deduce the precise asymptotic upper bounds on the cardinalities of m-shades of t(m)-intersecting families of k(m)subsets of [2m], as m → ∞. A genera...

متن کامل

THE EIGENVALUE METHOD FOR CROSS t-INTERSECTING FAMILIES

We show that the Erdős–Ko–Rado inequality for t-intersecting families of subsets can be easily extended to an inequality for cross t-intersecting families by using the eigenvalue method. The same applies to the case of t-intersecting families of subspaces. The eigenvalue method is one of the proof techniques to get Erdős–Ko–Rado type inequalities for t-intersecting families, for example, a proo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009